Partial Linear Eigenvalue Statistics for Wigner and Sample Covariance Random Matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue variance bounds for Wigner and covariance random matrices

This work is concerned with finite range bounds on the variance of individual eigenvalues of Wigner random matrices, in the bulk and at the edge of the spectrum, as well as for some intermediate eigenvalues. Relying on the GUE example, which needs to be investigated first, the main bounds are extended to families of Hermitian Wigner matrices by means of the Tao and Vu Four Moment Theorem and re...

متن کامل

Universality of Local Eigenvalue Statistics for Some Sample Covariance Matrices

Abstract We consider random, complex sample covariance matrices 1 N X ∗X , where X is a p×N random matrix with i.i.d. entries of distribution μ. It has been conjectured that both the distribution of the distance between nearest neighbor eigenvalues in the bulk and that of the smallest eigenvalues become, in the limit N → ∞, p N → 1, the same as that identified for a complex Gaussian distributio...

متن کامل

Eigenvalue Distribution of Large Sample Covariance Matrices of Linear Processes

We derive the distribution of the eigenvalues of a large sample covariance matrix when the data is dependent in time. More precisely, the dependence for each variable i = 1, . . . , p is modelled as a linear process (Xi,t)t=1,...,n = ( ∑∞ j=0 cjZi,t−j)t=1,...,n, where {Zi,t} are assumed to be independent random variables with finite fourth moments. If the sample size n and the number of variabl...

متن کامل

Isotropic local laws for sample covariance and generalized Wigner matrices

We consider sample covariance matrices of the form X∗X, where X is an M × N matrix with independent random entries. We prove the isotropic local MarchenkoPastur law, i.e. we prove that the resolvent (X∗X − z)−1 converges to a multiple of the identity in the sense of quadratic forms. More precisely, we establish sharp high-probability bounds on the quantity 〈v , (X∗X − z)−1w〉 − 〈v ,w〉m(z), where...

متن کامل

Wigner Theorems for Random Matrices with Dependent Entries: Ensembles Associated to Symmetric Spaces and Sample Covariance Matrices

It is a classical result of Wigner that for an hermitian matrix with independent entries on and above the diagonal, the mean empirical eigenvalue distribution converges weakly to the semicircle law as matrix size tends to infinity. In this paper, we prove analogs of Wigner’s theorem for random matrices taken from all infinitesimal versions of classical symmetric spaces. This is a class of model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2013

ISSN: 0894-9840,1572-9230

DOI: 10.1007/s10959-013-0491-2